Copied to
clipboard

G = C42:19D6order 192 = 26·3

17th semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:19D6, C6.212+ 1+4, C4:C4:50D6, (C4xD4):22S3, (D4xC12):24C2, D6:D4:7C2, C22:C4:49D6, (C22xC4):17D6, Dic3:D4:10C2, C23:2D6:21C2, C12:7D4:11C2, (C4xC12):28C22, D6:C4:31C22, D6.D4:8C2, (C2xD4).221D6, C42:3S3:10C2, C42:7S3:28C2, C2.17(D4oD12), (C2xC6).104C24, C4:Dic3:10C22, (C2xDic6):7C22, C23.14D6:27C2, C2.22(D4:6D6), (C2xC12).162C23, Dic3:C4:33C22, (C22xC12):11C22, Dic3.D4:9C2, C23.11D6:9C2, C3:2(C22.32C24), (C4xDic3):53C22, (C6xD4).308C22, (C2xD12).27C22, C22.6(C4oD12), C23.28D6:2C2, C6.D4:10C22, (C22xS3).38C23, (S3xC23).42C22, (C22xC6).174C23, C22.129(S3xC23), C23.111(C22xS3), (C2xDic3).45C23, (C22xDic3).99C22, C4:C4:S3:8C2, (C2xD6:C4):35C2, (C4xC3:D4):46C2, (S3xC2xC4):49C22, C6.46(C2xC4oD4), (C3xC4:C4):62C22, C2.53(C2xC4oD12), (C2xC3:D4):5C22, (C2xC6).17(C4oD4), (C3xC22:C4):58C22, (C2xC4).162(C22xS3), SmallGroup(192,1119)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42:19D6
C1C3C6C2xC6C22xS3S3xC23C2xD6:C4 — C42:19D6
C3C2xC6 — C42:19D6
C1C22C4xD4

Generators and relations for C42:19D6
 G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=a-1, dad=a-1b2, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 744 in 250 conjugacy classes, 95 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, D6, C2xC6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C24, Dic6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C2xC22:C4, C4xD4, C4xD4, C22wrC2, C4:D4, C22:Q8, C22.D4, C4.4D4, C42:2C2, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C4xC12, C3xC22:C4, C3xC4:C4, C2xDic6, S3xC2xC4, C2xD12, C22xDic3, C2xC3:D4, C22xC12, C6xD4, S3xC23, C22.32C24, C42:7S3, C42:3S3, Dic3.D4, D6:D4, Dic3:D4, C23.11D6, D6.D4, C4:C4:S3, C2xD6:C4, C4xC3:D4, C23.28D6, C12:7D4, C23:2D6, C23.14D6, D4xC12, C42:19D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, 2+ 1+4, C4oD12, S3xC23, C22.32C24, C2xC4oD12, D4:6D6, D4oD12, C42:19D6

Smallest permutation representation of C42:19D6
On 48 points
Generators in S48
(1 39 19 42)(2 37 20 40)(3 41 21 38)(4 31 17 34)(5 35 18 32)(6 33 16 36)(7 25 10 28)(8 29 11 26)(9 27 12 30)(13 46 22 43)(14 44 23 47)(15 48 24 45)
(1 16 24 9)(2 17 22 7)(3 18 23 8)(4 13 10 20)(5 14 11 21)(6 15 12 19)(25 37 34 43)(26 38 35 44)(27 39 36 45)(28 40 31 46)(29 41 32 47)(30 42 33 48)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 20)(2 19)(3 21)(4 6)(7 9)(10 12)(13 24)(14 23)(15 22)(16 17)(25 33)(26 32)(27 31)(28 36)(29 35)(30 34)(37 45)(38 44)(39 43)(40 48)(41 47)(42 46)

G:=sub<Sym(48)| (1,39,19,42)(2,37,20,40)(3,41,21,38)(4,31,17,34)(5,35,18,32)(6,33,16,36)(7,25,10,28)(8,29,11,26)(9,27,12,30)(13,46,22,43)(14,44,23,47)(15,48,24,45), (1,16,24,9)(2,17,22,7)(3,18,23,8)(4,13,10,20)(5,14,11,21)(6,15,12,19)(25,37,34,43)(26,38,35,44)(27,39,36,45)(28,40,31,46)(29,41,32,47)(30,42,33,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,20)(2,19)(3,21)(4,6)(7,9)(10,12)(13,24)(14,23)(15,22)(16,17)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,45)(38,44)(39,43)(40,48)(41,47)(42,46)>;

G:=Group( (1,39,19,42)(2,37,20,40)(3,41,21,38)(4,31,17,34)(5,35,18,32)(6,33,16,36)(7,25,10,28)(8,29,11,26)(9,27,12,30)(13,46,22,43)(14,44,23,47)(15,48,24,45), (1,16,24,9)(2,17,22,7)(3,18,23,8)(4,13,10,20)(5,14,11,21)(6,15,12,19)(25,37,34,43)(26,38,35,44)(27,39,36,45)(28,40,31,46)(29,41,32,47)(30,42,33,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,20)(2,19)(3,21)(4,6)(7,9)(10,12)(13,24)(14,23)(15,22)(16,17)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,45)(38,44)(39,43)(40,48)(41,47)(42,46) );

G=PermutationGroup([[(1,39,19,42),(2,37,20,40),(3,41,21,38),(4,31,17,34),(5,35,18,32),(6,33,16,36),(7,25,10,28),(8,29,11,26),(9,27,12,30),(13,46,22,43),(14,44,23,47),(15,48,24,45)], [(1,16,24,9),(2,17,22,7),(3,18,23,8),(4,13,10,20),(5,14,11,21),(6,15,12,19),(25,37,34,43),(26,38,35,44),(27,39,36,45),(28,40,31,46),(29,41,32,47),(30,42,33,48)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,20),(2,19),(3,21),(4,6),(7,9),(10,12),(13,24),(14,23),(15,22),(16,17),(25,33),(26,32),(27,31),(28,36),(29,35),(30,34),(37,45),(38,44),(39,43),(40,48),(41,47),(42,46)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H···4L6A6B6C6D6E6F6G12A12B12C12D12E···12L
order1222222222344444444···466666661212121212···12
size11112241212122222244412···12222444422224···4

42 irreducible representations

dim111111111111111122222222444
type++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6D6C4oD4C4oD122+ 1+4D4:6D6D4oD12
kernelC42:19D6C42:7S3C42:3S3Dic3.D4D6:D4Dic3:D4C23.11D6D6.D4C4:C4:S3C2xD6:C4C4xC3:D4C23.28D6C12:7D4C23:2D6C23.14D6D4xC12C4xD4C42C22:C4C4:C4C22xC4C2xD4C2xC6C22C6C2C2
# reps111111111111111111212148222

Matrix representation of C42:19D6 in GL6(F13)

1190000
420000
0000120
0000012
001000
000100
,
800000
080000
0010600
007300
0000106
000073
,
110000
1200000
0001200
0011200
000001
0000121
,
12120000
010000
0012100
000100
0000121
000001

G:=sub<GL(6,GF(13))| [11,4,0,0,0,0,9,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,12,0,0],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,10,7,0,0,0,0,6,3,0,0,0,0,0,0,10,7,0,0,0,0,6,3],[1,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[12,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;

C42:19D6 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{19}D_6
% in TeX

G:=Group("C4^2:19D6");
// GroupNames label

G:=SmallGroup(192,1119);
// by ID

G=gap.SmallGroup(192,1119);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,100,675,570,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a^-1*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<